BAT extension - définition. Qu'est-ce que BAT extension
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est BAT extension - définition

FIELD EXTENSION WHOSE GALOIS GROUP IS ABELIAN
Cyclic extension; Abelian extensions; Abelian Extension; Cyclotomic extension; Solvable extension; Cyclic field extension; Abelian field extension; Solvable field extension

Group extension         
  • Figure 1
GROUP FOR WHICH A GIVEN GROUP IS A NORMAL SUBGROUP
Extension problem; Extension (algebra); Split extension; Extension of a group; Central extension (mathematics)
In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence
Extension (metaphysics)         
THE PROPERTY OF STRETCHING OUT OR TAKING UP SPACE
Physical extension
In metaphysics, extension signifies both 'stretching out' (Latin: extensio) as well as later 'taking up space', and most recently, spreading one's internal mental cognition into the external world.
Serotine         
SPECIES OF MAMMAL
Serotine; Serotine Bat; Eptesicus serotinus; Common serotine bat; Silky bat
·noun The European long-eared bat (Vesperugo serotinus).

Wikipédia

Abelian extension

In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension.